

2022 MARKET REPORT

AEROSPACE IN GREATER ALBUQUERQUE, NEW MEXICO

NTRODUCTION

In Greater Albuquerque, New Mexico, a strong pool of qualified talent, a competitively priced operating environment with access to world-class innovation assets allow Greater Albuquerque to compete as a location of choice for high-quality aerospace, directed energy and aviation operations.

With low commercial and industrial real estate costs, a corporate income tax of 5.9 percent, and no inventory tax, companies operating in the aviation and aerospace industries can tap into a, low-cost operating environment with tax deductions on gross receipts.

TABLE OF CONTENTS

- **1 STATE LEVEL ASSETS**
- 2 INDUSTRY CLUSTER PRESENCE
- **3 OCCUPATIONAL PRESENCE AND WAGES**
- **4 TALENT DEVELOPMENT**
- **5 OPERATIONAL COST COMPARISON**
- **6 BUSINESS RESOURCES**

MARKET LANDSCAPE

New Mexico has long been at the forefront of innovation with a unique set of intellectual capital assets. These assets, along with high concentrations of relevant talent, one of-a-kind testing facilities, and a world-class manufacturing climate have put the state at the leading edge of the rapidly growing space industry.

Capturing the largest share of aerospace employment in the state of New Mexico, aerospace industries *thrive* in Greater Albuquerque.

Air Force Research Laboratory (AFRL)

Located in Albuquerque, New Mexico, the Air Force Research Laboratory (AFRL) is a scientific research organization dedicated to leading the nation's discovery, development, and integration of war-fighting technologies for air, space and cyberspace. With a combined budget of over \$384 million, the two directorates support space research development at Kirtland AFB in New Mexico.

The Space Vehicles Directorate is the U.S. Air Force's Center of Excellence for space technology research and development. Its mission is to develop and transition high pay-off space technologies to provide the military with space-based capabilities

The Directed Energy Directorate transitions technologies in four core technical competencies: laser systems, high-power electromagnetics, weapons modeling and simulation, and directed energy and electro-optics for space superiority.

The Space and Missiles Center

The Space and Missiles Center is the development center of the Air Force Space Command and has its Advanced Systems and Development Directorate at Kirtland AFB in New Mexico. SMC is responsible for the Global Positioning System (GPS), military satellite communications, defense meteorological satellites, space launch and range systems, satellite control networks, space-based infrared systems and space situational awareness capabilities.

Space Rapid Capabilities Office (RCO)

The Space Rapid Capabilities Office (RCO) is located at Kirtland AFB in New Mexico and seeks to quickly develop and produce prototypes. The mission of the Space RCO is to (1) to contribute to the development of low—cost rapid reaction payloads, busses, launch, and launch control capabilities in order to fulfill joint military operational requirements for on-demand space support and reconstitution; (2) to coordinate the execution of space rapid capabilities across the DOD with respect to planning, acquisition, and operations; and (3) to rapidly develop and field new classified space capabilities.

Sandia National Laboratories

Located in Albuquerque, N.M., Sandia National Laboratories is a major driver for innovation within the region and the state. Aligned to space technologies, the Space Mission program delivers sensing solutions to address a wide range of complex, national security issues in space. In addition, Surveillance and Reconnaissance (S&R) designs, tests, and integrates cutting-edge technology to demonstrate, field, and support high-impact S&R systems for the end-user.

Los Alamos National Laboratory

Los Alamos National Laboratory applies world-changing science and technology to current and emerging national and global security challenges. Today, the Intelligence and Space Research Division continues the laboratory's legacy of ensuring our nation's security, discovering the processes that govern space environments, studying the composition of planetary bodies, and capturing the most distant, most powerful cosmic explosions.

Spaceport America Los Alamos National Labs San Jia National Labs Canon AFB White Sands Missile Range Holloman AFB NM State University Physical Science Lab Air Force Bases National Labs Aerospace Testing Facilities with access to Restricted Airspace

SPACEPORT AMERICA

Spaceport America is a world-class facility providing unique and compelling advantages for testing and commercial operations. The facility is located in Southern New Mexico, is adjacent to the U.S. Army White Sands Missile Range (WSMR) and has already attracted some of the most respected companies in the space industry, including Virgin Galactic, its anchor tenant.

Restricted Airspace

Spaceport America provides access to both the National Airspace System (NAS) and 6,000 square miles of restricted airspace from surface to unlimited. This unique environment creates a quiet zone with minimal commercial aviation traffic that reinforces privacy and allows the safe testing of new designs with fewer regulatory delays.

Flexible Services

Streamlined policies and exemplary partnerships with U.S. Army White Sands Missile Range and other organizations allow for unique abilities to source equipment, materials and capabilities on an á la carte basis at preferred rates.

Communications

Spaceport America facilities are connected by high-speed fiber optic cable and remote areas of the campus can be connected using a point-to-point air fiber backhaul. Because of the proximity to White Sands Missile Range, spaceport personnel can facilitate access to radio frequencies typically reserved for Department of Defense applications when required for specific missions.

Perfect Climate

The warm and stable climate in southern New Mexico is ideal for aerospace operations, with an annual average of 340 days of flyable skies and less than 10 inches of precipitation. High elevation and low humidity reduce corrosion and permit year-round outdoor work. Current winds aloft are forecast with on-site SODAR and radiosonde capabilities.

Privacy & Security

Because of the remote location, there is minimal public exposure and protection for proprietary technology. Conduct operations safely and securely, and release information on your terms—or not at all. Meanwhile, armed security force, EMT-qualified firefighters, and IT Security team are available 24/7.

Unmanned Aerial Systems Testing

For unmanned aerial systems (UAS) customers, Spaceport America will facilitate a streamlined path toward experimental or type certification and/or COA through a special partnership with nearby New Mexico State University Physical Science Laboratory UAS Flight Test Center. By flying initially in restricted airspace, customers can reduce the risk of flight tests on new and unproven designs.

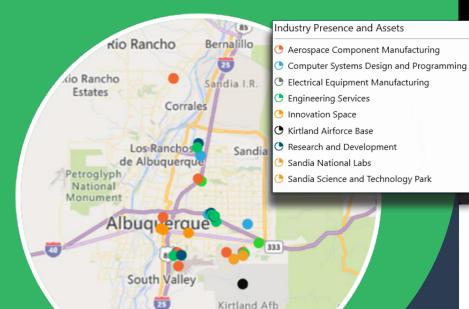
Source: New Mexico Partnership

METRO AREA	2021 Jobs	2021 Location Quotient
Tucson, AZ	17,888	3.13
Albuquerque, NM	15,972	2.79
Tulsa, OK	14,975	2.28
Dallas, TX	85,188	1.52
Phoenix, AZ	38,443	1.16
Oklahoma City, OK	10,772	1.14
Houston, TX	48,910	1.08
San Antonio, TX	10,919	0.70
Austin, TX	8,444	0.51
McAllen, TX	1,766	0.43
El Paso, TX	2,054	0.43

Source: EMSI Burning Glass Q1 2022 Hickey Global, 2021 In Greater Albuquerque, aerospace cluster industries employ nearly 16,000 and is nearly 3x more concentrated regionally than within the Nation. These industries have enjoyed comfortable expansions thanks to the unique assets anchored within the region. In fact, growth within cluster industries increased by 11.7 percent (1,670 jobs) from 2016 to 2021, outpacing the national growth rate of 4.2 percent.

Contributing over \$2 billion to regional GDP, job growth within these industries continue to position Greater Albuquerque as a location of choice, with density of qualified skills and occupational presence.

Shown below, with access to strong federal and private sector assets, Greater Albuquerque holds the second highest location quotient for metropolitan areas in the Southwest with populations of more than 500,000.


2021 Job Counts and Concentration

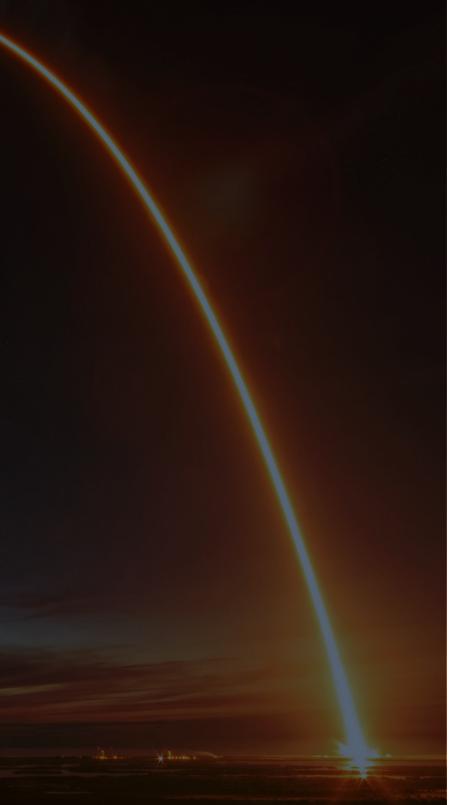
1Location Quotient: Location quotients (LQ) are a useful way of quantifying how concentrated a particular industry, cluster, or occupation is in a region as compared to a larger geographic area. An LQ of 1 is equally concentrated within both areas. An LQ of 1.5 indicates that the smaller geographic region is 50% more concentrated regionally, and an LQ of 2 indicates the geographic region is twice as concentrated regionally.

MAJOR EMPLOYERS

Los Padillas

EMPLOYER	Emp. Estimate
Kirtland Air Force Base	33,00
Sandia National Labs	14,00
Blue Halo	30
SolAero Technologies Corp	23
Eclipse Aerospace	20
BAE Systems	18
Aerospace Corp	18
Fiore Industries, Inc.	16
Boeing	13
AeroParts Manufacturing	10

INVESTING IN ALBUQUERQUE


In 2021, BlueHalo, an integrated national security and technology company, chose the Greater Albuquerque region for a new, 200,000 square foot state-of-the-art campus to facilitate BlueHalo's acceleration into production and its long-term commitment to investing in New Mexico and creating high-wage manufacturing jobs.

GG

We are excited about the selection of our new franchise technology campus in Albuquerque. This site represents BlueHalo's long-term commitment to New Mexico and will not only enhance the company's ability to support current and future programs at Kirtland Air Force Base but will also serve as one of the major hubs across the BlueHalo Labs national infrastructure designed to fuel future innovations to solve some of the most complex technology problems and transition those to full production.

Jonathan Moneymaker Chief Executive Officer, BlueHalo

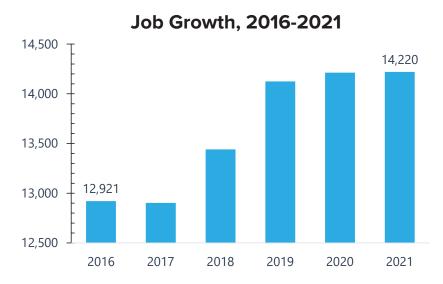
INDUSTRY CLUSTER

With nearly 16,000 people employed in 2021, the aerospace industry cluster within the Albuquerque MSA maintains a significant regional presence. Shown below, subindustries that complement this presence are highlighted. As shown, these industries hold a notable footprint within the region and have experienced significant growth over the past five years. Most recently, the mix of industries shown below have experienced 11.7 percent job growth 2016-2021. With a critical mass of nearly 16,000 employees in 2021, jobs within these industries are forecasted to grow an additional 2.2 percent 2021-2026.

The table below highlights the employment levels for 6-digit NAICS industries alongside 5-year job growth scenarios within the Albuquerque MSA.

Industry Description	2016 Jobs	2021 Jobs	% Change 16-21
Research and Development in the Physical, Engineering, and Life Sciences	11,553	13,987	21.1%
Industrial Machinery Merchant Wholesalers	407	362	-11.0%
Support Activities for Air Transportation	354	312	-11.8%
Navigation, Guidance, Aeronautical, and Nautical and Instrument Mfg.	719	153	-78.8%
Fabricated Structural Metal Mfg.	133	188	41.1%
Aircraft Parts and Equipment Mfg.	109	141	29.8%
Ornamental and Architectural Metal Mfg.	123	159	29.0%
Industrial Supplies Merchant Wholesalers	178	155	-12.6%
Aircraft Engine and Engine Parts Mfg.	109	154	41.1%
Metal Window and Door Mfg.	113	75	-33.6%
Aircraft Manufacturing	360	91	-74.8%
Sheet Metal Work Manufacturing	89	98	10.7%
Plate Work Manufacturing	28	33	14.9%
Primary Battery Manufacturing	5	24	370.2%
Misc. Electrical Equip. Mfg.	15	25	66.5%
Regional Total	14,290	15,957	11.7%

A HOTSPOT FOR **SKILLED TALENT that** supports aerospace research, development and manufacturing for aerospace, electronics and semiconductors.



GREATER **ALBUQUERQUE IS**

FIVE-YEAR GROWTH OVERVIEW

In Greater Albuquerque, innovation anchors opportunity and drives growth within aerospace industry sectors.

Shown below, the region's mix of specialized talent which supports a variety of aerospace operations has expanded 10.1 percent over the last five-years. Historical growth within these occupations has deepened Greater Albuquerque's concentrations of relevant talent. Shown below, select occupations are well above national averages for employment concentration.

Job Concentration

Aerospace Engineers

National Average

The national average for an area this size is 162 employees, while there are 360 here.

Industrial Engineering **Technicians**

National Average

The national average for an area this size is 162 employees, while there are 660 here.

Computer and Information Research Scientists

National Average

The national average for an area this size is 85 employees, while there are 330 here.

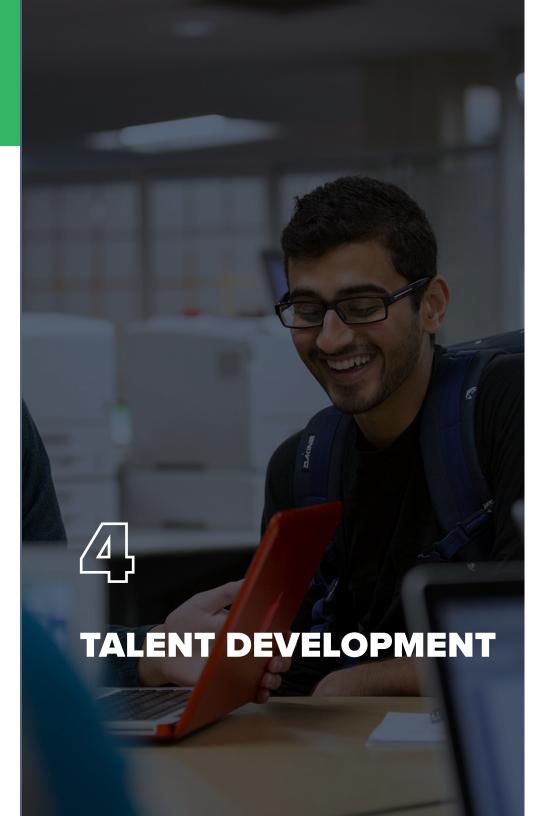
Source: EMSI Burning Glass Q1 2022 Hickey Global, 2021

Source: EMSI Burning Glass Q1 2022

OCCUPATIONAL PRESENCE

COMPARATIVE OCCUPATIONAL PRESENCE

Occupation Description	2016 Jobs	2021 Jobs	Percent Change	Median Hourly Earnings
Skilled Engineering Talent				
Aerospace Engineers	424	363	-14.4%	\$56.26
Computer Hardware Engineers	679	825	21.6%	\$56.20
Electrical Engineers	1,251	1,107	-11.5%	\$58.14
Industrial Engineers	366	353	-3.4%	\$48.55
Materials Engineers	220	227	3.2%	\$63.70
Mechanical Engineers	932	1,034	11.0%	\$58.16
Engineers, All Other	955	1,053	10.3%	\$60.01
Cohort Total	4,826	4,963	2.8%	
Skilled Computer and Technical Talent				
Computer and Information Systems Managers	512	613	19.7%	\$52.73
Information Security Analysts	373	570	52.6%	\$54.64
Computer and Information Research Scientists	328	330	0.7%	\$63.45
Computer Network Architects	307	301	-1.9%	\$47.98
Computer Programmers	365	519	42.4%	\$36.27
Software Developers and Quality Assurance Analysts	1,634	2,068	26.6%	\$46.47
Cohort Total	3,519	4,401	25.1%	
Skilled Production Technicians				
Aerospace Engineering and Operations Technicians	99	70	-29.3%	\$32.35
Electrical and Electronic Engineering Technicians	764	479	-37.3%	\$31.35
Electro-Mechanical and Mechatronics Technicians	122	77	-37.0%	\$34.58
Industrial Engineering Technicians	769	656	-14.8%	\$38.91
Mechanical Engineering Technicians	88	90	2.1%	\$39.70
Calibration Technicians	881	1,227	39.2%	\$37.30
Aircraft Mechanics and Service Technicians	287	306	6.5%	\$30.87
Cohort Total	3,011	2,905	-3.5%	
Primary Production and Maintenance				
Sheet Metal Workers	338	412	21.9%	\$25.81
Industrial Machinery Mechanics	587	693	18.0%	\$23.55
Aircraft Structure, Surfaces and Systems Assemblers	53	199	278.1%	\$32.37
Electrical, Electronic, and Electromechanical Assemblers	220	221	0.1%	\$18.95
Engine and Other Machine Assemblers	10	51	417.3%	\$21.68
Machinists	334	340	1.8%	\$22.29
Welding, Soldering, and Brazing Machine Operators	22	36	63.8%	\$19.88
Cohort Total	1,564	1,952	24.81%	
Regional Total all Cohorts	12,920	14,221	10.1%	

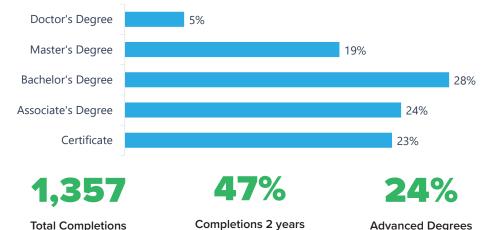

	ABQ	Tucson	Dallas	Phoenix	Oklahoma City	Houston	San Antonio	Los Angeles	Colorado Springs	San Diego
Software Developers Quality Assurance Analysts	2,068	4,923	51,249	26,297	4,080	19,427	5,807	57,809	6,822	19,396
Calibration Technicians	1,227	332	2,401	1,209	576	4,077	784	3,715	129	1,455
Electrical Engineers	1,107	1,748	3,268	3,340	614	4,484	737	8,816	417	2,683
Engineers, All Other	1,053	507	2,826	1,156	1,347	3,145	757	9,319	478	2,986
Mechanical Engineers	1,034	1,707	6,524	3,540	799	7,761	1,006	9,650	431	3,218
Computer Hardware Engineers	825	146	2,100	1,545	157	594	113	2,561	945	1,078
ndustrial Machinery Mechanics	693	280	8,279	3,065	1,240	13,577	2,005	8,300	457	2,142
ndustrial Engineering Technicians	656	135	2,067	1,133	418	1,750	260	1,534	235	511
Computer and Info. Systems Managers	613	877	12,186	8,248	1,697	6,112	2,115	21,601	808	6,535
nformation Security Analysts	570	307	5,942	3,511	398	2,343	995	2,956	1,109	1,254
Computer Programmers	519	329	7,667	1,814	415	3,293	686	6,263	235	1,923
lectrical and Electronic Engineering echnicians	479	318	3,091	2,459	551	2,781	709	5,340	215	2,592
heet Metal Workers	412	491	3,445	2,159	2,530	2,629	1,189	3,079	246	2,044
serospace Engineers	363	177	3,080	1,651	841	1,534	302	4,145	196	1,575
ndustrial Engineers	353	984	8,315	4,778	626	4,757	1,408	9,312	494	3,507
Machinists	340	773	6,002	2,981	936	8,744	1,026	14,380	440	3,392
Computer and Info. Research Scientists	330	45	555	77	230	90	191	1,110	62	1,056
sircraft Mechanics and Service Technicians	306	1,121	6,760	2,871	2,086	3,131	1,499	4,978	264	1,616
Computer Network Architects	301	228	6,884	3,342	519	2,550	1,258	4,882	844	1,876
Naterials Engineers	227	51	488	305	91	656	328	1,029	17	227
Electrical, Electronic, and Electromechanical	221	390	9,501	4,210	1,335	4,184	1,096	14,105	459	5,842
Aircraft Structure, Surfaces, and Systems Assemblers	199	5	2,800	773	96	43	43	1,501	63	1,334
Mechanical Engineering Technicians	90	175	820	825	102	1,265	225	1,396	66	285
lectro-Mechanical and Mechatronics echnicians	77	5	502	122	68	463	100	772	12	142
ecrimicans eerospace Engineering and Operations echnicians	70	21	687	780	43	80	197	686	32	282
ngine and Other Machine Assemblers	51	120	594	42	422	619	60	657	5	138
Velding, Soldering, and Brazing Machine etters, Operators	36	10	680	228	159	564	479	1,026	36	103
otal	14,220	16,203	158,712	82,458	22,378	100,653	25,377	200,920	15,516	69,192

Source: EMSI Burning Glass Q1 2022 City names reflect metro areas

COMPARATIVE OCCUPATIONAL WAGE ANALYSIS

City names reflect metro areas

Occupation Description	ABQ	Tucson	Dallas	Phoenix	Oklahoma City	Houston	San Antonio	Los Angeles	Colorado Springs	San Diego
Materials Engineers	\$132,496	\$86,611	\$99,195	\$110,531	\$94,390	\$122,658	\$97,427	\$107,494	\$93,392	\$91,603
Engineers, All Other	\$124,821	\$126,048	\$109,637	\$106,579	\$90,626	\$136,989	\$117,000	\$103,064	\$120,515	\$114,691
Mechanical Engineers	\$120,973	\$92,934	\$94,182	\$99,362	\$86,486	\$99,902	\$90,522	\$103,085	\$91,562	\$98,634
Electrical Engineers	\$120,931	\$91,146	\$101,026	\$93,974	\$95,763	\$108,597	\$88,816	\$118,498	\$108,722	\$102,502
Aerospace Engineers	\$117,021	\$104,874	\$131,061	\$123,739	\$96,866	\$140,774	\$112,653	\$128,814	\$119,454	\$108,909
Computer Hardware Engineers	\$116,896	\$100,464	\$118,394	\$124,613	\$124,675	\$113,360	\$104,021	\$113,131	\$120,536	\$132,642
Industrial Engineers	\$100,984	\$87,485	\$95,472	\$97,573	\$87,194	\$111,571	\$87,298	\$102,045	\$104,416	\$94,037
Computer and Information Research Scientists	\$131,976	\$101,795	\$136,302	\$131,664	\$105,019	\$124,301	\$116,542	\$137,509	\$105,893	\$132,725
Information Security Analysts	\$113,651	\$92,893	\$115,877	\$100,214	\$79,019	\$114,920	\$93,080	\$114,691	\$110,053	\$108,035
Computer and Information Systems Managers	\$109,678	\$125,757	\$154,378	\$142,709	\$120,557	\$154,315	\$138,486	\$171,059	\$155,917	\$162,365
Computer Network Architects	\$99,798	\$96,013	\$125,133	\$110,469	\$88,858	\$119,558	\$115,045	\$120,806	\$119,350	\$106,954
Software Developers and Quality Assurance Analysts	\$96,658	\$99,195	\$110,178	\$102,066	\$86,424	\$107,952	\$110,178	\$118,997	\$110,365	\$118,934
Computer Programmers	\$75,442	\$91,603	\$93,122	\$90,022	\$77,251	\$105,747	\$87,298	\$96,845	\$73,632	\$95,618
Mechanical Engineering Technologists and Technicians	\$82,576	\$52,686	\$59,842	\$62,525	\$65,229	\$63,939	\$57,637	\$74,651	\$64,480	\$48,464
Industrial Engineering Technologists and Technicians	\$80,933	\$57,242	\$68,682	\$61,069	\$70,491	\$56,618	\$61,381	\$66,061	\$40,186	\$61,194
Calibration Technicians	\$77,584	\$56,326	\$61,838	\$47,278	\$63,253	\$54,808	\$54,704	\$61,610	\$71,032	\$78,146
Electro-Mechanical and Mechatronics Technicians	\$71,926	n.a.	\$49,088	\$72,488	\$44,450	\$53,394	\$59,467	\$63,669	\$73,757	\$69,077
Aircraft Structure, Surfaces, and Systems Assemblers	\$67,330	n.a.	\$58,032	\$45,011	\$46,384	\$85,322	\$51,230	\$40,394	\$51,418	\$59,758
Aerospace Engineering and Operations Technicians	\$67,288	\$66,997	\$73,965	\$60,653	\$94,536	\$71,469	\$71,906	\$76,086	\$82,160	\$72,051
Electrical and Electronic Engineering Technicians	\$65,208	\$61,589	\$67,683	\$65,666	\$71,053	\$70,138	\$70,928	\$64,272	\$66,643	\$74,901
Aircraft Mechanics and Service Technicians	\$64,210	\$62,795	\$77,397	\$71,802	\$57,554	\$68,370	\$60,091	\$74,797	\$66,643	\$69,971
Sheet Metal Workers	\$53,685	\$42,141	\$47,549	\$48,922	\$56,576	\$45,843	\$38,272	\$51,605	\$43,306	\$63,565
Industrial Machinery Mechanics	\$48,984	\$59,571	\$53,248	\$54,101	\$51,522	\$63,045	\$49,774	\$58,406	\$66,643	\$60,278
Machinists	\$46,363	\$45,219	\$44,262	\$49,130	\$46,966	\$49,234	\$47,133	\$44,221	\$40,144	\$45,843
Engine and Other Machine Assemblers	\$45,094	\$45,656	\$47,528	\$38,376	\$34,133	\$38,459	\$34,570	\$34,154	n.a.	\$38,792
Welding and Brazing Machine Setters, Operators	\$41,350	\$38,272	\$34,507	\$43,389	\$44,075	\$36,878	\$34,653	\$39,395	\$37,440	\$39,312
Electrical, Electronic, and Electromechanical Assemblers	\$39,416	\$34,507	\$36,234	\$37,232	\$36,670	\$36,400	\$32,802	\$35,526	\$31,886	\$38,168
Source: EMSI Burning Glass Q1 2022										



Helping to fuel the region's specialization in aerospace, secondary-education pipelines provide a direct connection to employment for the future workforce.

Within the State of New Mexico, 2,400 students graduate within programs closely linked to aerospace industries, 46 percent coming from the institutions within Greater Albuquerque.

Graduate Output (2020)

Total Completions

or less

Advanced Degrees

Program Output	Completions 2020
Engineering	456
Computer and Information Sciences	290
Mechanic and Repair Technologies	188
Mathematics and Statistics	135
Precision Production	122
Physical Sciences	124
Engineering Technologies	4
Regional Total	1,357

Total Aerospace Completions Certificate Completions

Associate's Degree Completions

As the largest community college in the state of New Mexico, Central New Mexico Community College (CNM) is ranked #1 among peers for associate degree and certificates for Hispanics and Native Americans. With innovative programs like its CNM Ingenuity program, CNM offers accelerated approaches to education and job training in key workforce areas, as well as wrap-around support for entrepreneurs and cooperative ventures that foster economic development and job creation in the region.

PROGRAM SPOTLIGHT

Unmanned Aircraft Systems (UAS)

Within the Advanced Technology Center at CNM, the Unmanned aircraft systems (UAS) program gives students direct access to industry standards.

This program introduces the fundamentals of UAS safety and regulation and emphasizes the use of UAS for high-precision measurement and mapping and other applications including construction management, surveying, marketing and others.

ADVANCED TECHNOLOGY CENTER

80,000

square feet

state-of-the-art laboratory and classroom space.

Total Aerospace Completions

Bachelor's Degree Completions

Master's Degrees +
Completions

The University of New Mexico is a comprehensive, Carnegie designated Research 1 University and offers a degree in aerospace engineering which prepares students to be leaders in research, design, construction and analysis of aircraft, satellites, manned and unmanned space and aerial vehicles, and the systems they incorporate.

INNOVATION

COSMIAC is an innovative research center at The University of New Mexico (UNM) in Albuquerque, NM. COSMIAC serves as a Tier-2 Research Center at the School of Engineering offering 15,000 square feet of innovation research space including a cleanroom and laboratories.

COSMIAC promotes innovation, including collaborative efforts with government, business and academic institutions on grant and contract proposals. Some of COSMIAC's customers include the US Air Force, NASA, Leidos, Northrop Grumman and SAIC.

COSMIAC: Key Areas of Specialization

- Agile Manufacturing
- · C-UAS
- Embedded and Reconfigurable Systems
- RF Systems/Propagation
- Small Satellite Development
- Space Radiation Effects Mitigation
- Virtual Reality and Augmented Reality

TALENT DEVELOPMENT

Computer a 11.01 11.02 11.07	Ind Information Sciences Computer and Information Sciences, General	222			
11.02	Computer and Information Sciences, General	าาา			
		223	217	186	184
11.07	Computer Programming	7	4	20	12
11.07	Computer Science	5	4	10	24
11.08	Computer Software and Media Applications	1	3	4	1
11.1	Computer/Information Technology Management	85	44	80	70
	Cohort Total	321	272	300	291
Engineering	1				
14.01	Engineering, General	87	84	67	84
14.05	Biomedical/Medical Engineering	13	15	20	10
14.07	Chemical Engineering	61	72	65	58
14.08	Civil Engineering	66	67	68	66
14.09	Computer Engineering	42	45	39	35
14.1	Electrical, Electronics, and Communications Engin.	88	83	75	57
 14.13	Engineering Science	13	14	20	11
14.19	Mechanical Engineering	128	126	136	112
14.23	Nuclear Engineering	17	23	26	23
0	Cohort Total	515	529	516	456
		313	323	310	430
	g/Engineering-related Technologies	4	2	0	
15.12 15.12	Computer Engineering Technologies	4	2	9	3
15.13	Drafting/Design Engineering Technologies	43	55	52	14
15.17	Energy Systems Technologies	25	4	12	24
	Cohort Total	72	61	73	41
Mathemati	cs and Statistics				
27.01	Mathematics	60	68	125	121
27.05	Statistics	18	23	16	14
	Cohort Total	78	91	141	135
Physical Sci					
40.01	Physical Sciences, General	14	24	19	17
40.0 <i>1</i> 40.02	Astronomy and Astrophysics	13	4	7	5
40.02 40.05	Chemistry	50	52	50	42
40.03 40.08	Physics	34	59	61	42
40.00 40.1	Materials Sciences	14	16	14	11
+U. I					
	Cohort Total	125	155	151	124
Mechanic a	nd Repair Technologies/Technicians				
47.06	Vehicle Maintenance and Repair Technologies	210	194	207	188
	Cohort Total	210	194	207	188
Precision P	roduction				
48.05	Precision Metal Working	125	119	137	122
	Cohort Total	125	119	137	122
	Regional Total	1,446	1,421	1,525	1,357

OPERATIONAL COST COMPARISON

Workforce Profile

Skilled Computer and Technical Talent

Software Developers and Software Quality Assurance Analysts	15
Computer Programmers	10
Computer Network Support Specialists	10
Computer Systems Analysts	10
Database Administrators	5
Information Security Analysts	5
Computer Network Architects	5

Office and Administrative Management

Total Workforce	8
Human Resource Specialists	
Accountants and Auditors	
Bookkeeping, Accounting, and Auditing Clerks	
Sales Representative	
General Operations Managers	
Project Administrators	
Information Systems Managers	

INVESTMENT PROFILE

Center for Aerospace Tech and Computer Systems Design

The following investment profile has been prepared based on a hypothetical production facility, reflective of the following requirements.

Building Type: Class A Office Payroll Costs Real Estate Costs **Building Sq. Ft.:** 20,000 Status: Lease

Less than Peer Average

47.3%

Less than Peer Average

	ABQ	Tucson	Dallas	Phoenix	Oklahoma City	Houston	San Antonio I	Los Angeles	Colorado Springs	San Diego
Payroll	\$6,535,942	\$6,717,734	\$8,104,346	\$7,213,856	\$6,205,722	\$8,143,762	\$7,328,547	\$8,158,634	\$7,518,098	\$7,864,189
Real Estate	\$350,000	\$498,200	\$650,200	\$606,400	\$404,000	\$759,600	\$556,600	\$980,200	\$519,000	\$998,800
Total	\$6,885,942	\$7,215,934	\$8,754,546	\$7,820,256	\$6,609,722	\$8,903,362	\$7,885,147	\$9,138,834	\$8,037,098	\$8,862,989
% Savings	0.0%	4.8%	27.1%	13.6%	-4.0%	29.3%	14.5%	32.7%	16.7%	28.7%

Note: The above chart only includes costs associated with labor and real estate. It does not include costs factors for property taxes, employee benefits, or transportation costs. As such figures should not be interpreted as total annual operating cost. Labor costs are a function of median hourly earnings for each occupation and assumes 2,080 hours/year.

Source: EMSI Burning Glass Q1 2022

BUSINESS RESOURCES

THE HIGH WAGE JOB TAX CREDIT

A taxpayer who is an eligible employer may apply for and receive a tax credit for each new high-wage economic-base job. The credit amount equals 8.5% of the wages and benefits paid for each new economic-base job created, up to \$12,750 per job.

TECHNOLOGY JOBS AND R&D TAX CREDIT

Employers conducting qualified research at a qualified facility and making qualified expenditures of no more than \$5 million in New Mexico is eligible to claim the basic technology jobs and research and development tax credit of 5 percent against the taxpayer's compensating tax, withholding tax or gross receipts tax, excluding local option gross receipts tax. The tax credit will double to 10 percent for expenditures in facilities located in rural New Mexico.

MANUFACTURING INVESTMENT TAX CREDIT

New Mexico tax law provides for a credit equal to 5 percent of the value of qualified equipment and other property used directly and exclusively in a manufacturing operation. The credit can be applied against compensating tax, gross receipts tax and withholding tax. Gross receipts tax acts very much like a sales tax; the Albuquerque rate is 7.750 percent

LOCAL ECONOMIC DEVELOPMENT ACT (LEDA)

The Local Economic Development Act allows the state and local governments to offer limited, discretionary financial participation in qualified economic development projects. These funds are targeted toward private sector, economic—base businesses, that can demonstrate additional funding is needed to close a competitive cost gap. LEDA discretionary funds can only be used for reimbursement of eligible expenditures tied to land, building(s) and/or infrastructure. LEDA funds cannot be used for equipment or working capital.

INDUSTRIAL REVENUE BOND (IRB)

New Mexico's property taxes are among the lowest in the nation for both real and personal property. Property taxes can be further abated using an Industrial Revenue Bond (IRB).

JOB TRAINING INCENTIVE PROGRAM (JTIP)

The New Mexico Job Training Incentive Program is a highly flexible state program that provides on—the—job training. Customized training may be provided by post—secondary educational institutions, company trainers, or outside trainers.

TARGETED BUSINESS RESOURCES

AIRCRAFT MANUFACTURING AND MAINTENANCE SERVICES TAX DEDUCTION

Receipts of an aircraft manufacturer or affiliate from selling aircraft or aircraft parts; services performed on aircraft or aircraft components; and aircraft flight support, pilot training or maintenance training services, may be deducted from gross receipts. In addition, receipts from selling aircraft parts or maintenance services for aircraft or aircraft parts, may be deducted from gross receipts.

SPACE GROSS RECEIPTS TAX DEDUCTION

In New Mexico, businesses may deduct receipts from launching, operating, and recovering space vehicles or payloads; preparing a payload; and operating a spaceport. Additionally, receipts from the provision of research, development, testing and evaluation services for the U.S. Air Force operationally responsive space program may be deducted from gross receipts.

DIRECTED ENERGY SYSTEMS GROSS RECEIPTS TAX DEDUCTION

Contractors, other than a national laboratory, that provide qualified research and development services for directed energy and satellite-related inputs to the United States department of defense, may deduct their receipts derived from such inputs and services. This deduction only applies to contracts with the department of defense entered on or after January 1, 2016

COMMERCIAL OR MILITARY AIRCRAFT TAX DEDUCTION

Deductions on receipts from the sale of or the maintaining, refurbishing, remodeling or otherwise modifying a commercial or military carrier over 10,000 lbs. gross landing weight.

MILITARY ACQUISITION PROGRAM TAX DEDUCITON

Receipts from transformational acquisition programs performing research and development, testing, and evaluation at New Mexico major range and test facility bases pursuant to contracts entered into with the U. S. Department of Defense may be deducted from gross receipts.

LEARN MORE

Grant Taylor

Director of Business
Development and Analytics

gtaylor@abq.org 505-705-3787

